2012 Van Nicholas Mistral Base

Design
Drop Bar, Rigid, non-suspension corrected
Frame
Titanium
Fork
Carbon/Composite
Features
Rim brake
Somewhat aggressive stack and reachvs category
Somewhat aggressive stack and reachvs category
Average stack and reachvs category
Average stack and reachvs category
Average stack and reachvs category
Average stack and reachvs category

Geometry

50.0
52.0
54.0
56.0
58.0
60.0
Stack
527mm
538.2mm
552.5mm
568.6mm
582.9mm
599mm
Reach
377.4mm
380.4mm
380.9mm
381.7mm
388.3mm
394.6mm
Stack to Reach Ratio
1.4:1
1.41:1
1.45:1
1.49:1
1.5:1
1.52:1
Seat Tube Length, C-T
470mm
490mm
510mm
530mm
550mm
570mm
Seat Tube Length, C-C
435mm
455mm
475mm
495mm
515mm
535mm
Top Tube Length, Effective/Horizontal Center
520mm
531mm
540mm
550mm
566mm
577mm
Top Tube Length, Actual C-C
505mm
516mm
525mm
535mm
551mm
563mm
Top Tube Slope
9.1deg
8.1deg
7.4deg
6.8deg
6.2deg
5.6deg
Head Tube Angle
72deg
72.5deg
72.5deg
73deg
73deg
73.5deg
Seat Tube Angle
75deg
74.5deg
74deg
73.5deg
73deg
73deg
Head Tube Length
110mm
120mm
135mm
150mm
165mm
180mm
Bottom Bracket Drop
70mm
70mm
70mm
70mm
70mm
70mm
Bottom Bracket Height
266mm
266mm
266mm
266mm
266mm
266mm
Chainstay Length
405mm
405mm
405mm
405mm
405mm
405mm
Chainstay Length Horizontal
398.9mm
398.9mm
398.9mm
398.9mm
398.9mm
398.9mm
Front-Center
575mm
577mm
582mm
583mm
594mm
600mm
Front-Center Horizontal
571.1mm
573.1mm
578.1mm
579.1mm
590.1mm
596.1mm
Wheelbase
970mm
972mm
977mm
978mm
989mm
995mm
Fork Offset/Rake
43mm
43mm
43mm
43mm
43mm
43mm
Fork Length, Unknown
367mm
367mm
367mm
367mm
367mm
367mm
Trail
64mm
mid/​neutral
60.9mm
mid/​neutral
60.9mm
mid/​neutral
57.8mm
mid/​neutral
57.8mm
mid/​neutral
54.7mm
mid/​neutral
Mechanical Trail
60.8mm
58mm
58mm
55.2mm
55.2mm
52.4mm
Wheel Flop
18.8mm
17.5mm
17.5mm
16.2mm
16.2mm
14.9mm
Tire to Pedal Spindle
69mm
170 mm cranks
71mm
170 mm cranks
76mm
170 mm cranks
77mm
170 mm cranks
88mm
170 mm cranks
94mm
170 mm cranks
Pedal Spindle to Ground Clearance
96mm
170 mm cranks
96mm
170 mm cranks
96mm
170 mm cranks
96mm
170 mm cranks
96mm
170 mm cranks
96mm
170 mm cranks

Base Build

50.0
52.0
54.0
56.0
58.0
60.0
Wheel Size
700C/29 in
622 mm BSD
700C/29 in
622 mm BSD
700C/29 in
622 mm BSD
700C/29 in
622 mm BSD
700C/29 in
622 mm BSD
700C/29 in
622 mm BSD
Tire Width
25mm
25mm
25mm
25mm
25mm
25mm
Tire Width Max
25mm
25mm
25mm
25mm
25mm
25mm
Tire Outer Diameter
672mm
672mm
672mm
672mm
672mm
672mm
Bike Length with Tires
1642mm
1644mm
1649mm
1650mm
1661mm
1667mm

Stack and Reach vs. Category Trend

Very Upright
Somewhat Upright
Average
Somewhat Aggressive
Very Aggressive

The Bike Insights Upright/Aggressive scale is based on analysis of a bike’s proportions relative to similar sized bikes in the same category.

Learn more about the Upright/Aggressive Scale
Category Trend
Endurance Road
Source: